Biological Machines, Cell Mechanics and Nanotechnology Part III

王歐力 副教授 Oliver I. Wagner, PhD Associate Professor

National Tsing Hua University Institute of Molecular & Cellular Biology College of Life Science

The protein nano-factory

DNA and RNA polymerases are important biological machines

DNA polymerase and RNA polymerase are molecular motors that walk on DNA

DNA polymerases (and helicases) are biological motors that function in <u>DNA replication</u> (and repair)

RNA polymerase make a copy of DNA (<u>transcription</u>) and from this copy (**mRNA**) proteins are designed in the cell (<u>translation</u>)

The RNA polymerase is a macromolecular machine with a difficult design

Example from your reading material!

<u>DNA is clamped between two subunits</u> and then the **double helix** is **opened**Then a **copy** from a <u>single DNA strand</u> is **made** into a <u>single strand RNA</u>

Single molecule methods to study DNA/RNA motors

Immobilized DNA/RNA motor

shortens or lengthens the DNA/RNA that can be detected by bead displacements

Seidel and Dekker, 2007, Curr. Opin. Struct. Biol.

Direct motor movement

on stretched DNA/RNA can be detected by <u>attaching a fluorescently</u> <u>labeled bead</u> Detection of single base pair stepping by *E. coli* RNA polymerase (RNAP)

Two optical traps:

• One holds the DNA with **strong force**, the other holds the RNAP with **weak force**

• If RNAP moves, the attached bead is displaced (to the right)

Single molecule methods to study DNA/RNA motors

Properties of r	nucleic acid motors of	haracterized using	single-molecu	le techniqu	ies durir	ng the past tw	o years ^a .
Name	Туре	Function	No. catalytic subunits	Velocity (bp s ⁻¹) ^b	Force (pN) ^c	Processivity (bp) ^d	Step size (bp)
<i>E. coli</i> RNA polymerase	RNA polymerase	Transcription	1	16	25	Several kbp	1
T7 RNA polymerase	RNA polymerase	Transcription	1	130	16	>1000	1
FtsK	dsDNA translocase	Chromosome segregation	6	5000	40	>5000	2 or 13
Φ 29 portal motor	dsDNA translocase	Viral packaging	5	100	57	15 000	NN
RuvAB	dsDNA translocase	Migrates Holliday junctions	6	43	25	4000	NN
HCV NS3 RNA helicase	RNA helicase	HCV replication	1 or 2	50	NN	18	11
<i>Eco</i> R124I	dsDNA translocase	Type I restriction enzyme	1	550	>5	5000	1–2
RSC complex	dsDNA translocase	Chromatin remodeling	1	350	>2	400	12
Rad54	dsDNA translocase	Homologous recombination	NN	300	NN	12 000	NN
RecBCD	DNA helicase	dsDNA break processing	2	520	8	30 000	<6 or 23
<i>B. subtili</i> s DNA uptake	ssDNA translocase	Horizontal gene transfer	NN	80	45	>10 000	NN
T7 replisome	DNA replicase	DNA unwinding and synthesis	6 and 1	160	NN	17 000	NA

Seidel and Dekker, 2007, Curr. Opin. Struct. Biol.

The nuclear pore: the smallest filter in the world

The nuclear pore: a molecular nano-filter

The nuclear pore: a molecular nano-filter

How the **nano-sieve** works:

Transporter

FG-repeat (hydrophobic)

Animation IntoTheNucleus.mov

http://sspatel.googlepages.com/nuclearporecomplex2

The bacterial flagellum motor

i μm

Not a flagella as found in other (non-bacterial) cells (**not** made of microtubules)

embrane -

The bacterial flagellum motor

Example from your reading material!

- Motor composed of 20 proteins
- **40 genes** needed to make the motor and its flagellum
- 8 torque (turning) generators driven by proton motion force (no ATP required)
- 1200 protons needed per turn
- 100 revolutions per second
- 18,000 RPM (300 Hz)
- Directional reverse within 1/10 of second
- Efficiency: < 5%
- Power output: 10⁻¹⁵ Watt (<u>2-3 more efficient than ATP motors</u>)

A proton gradient drives the motor like water drives a turbine

- **Drive shaft** passes thru <u>two rings</u> in the <u>outer membrane</u>. The rings act as bearings. Not involved in force generation
- C-ring (cytoplasmic ring) is important for force production and directional reversal
- MotA and MotB rings form the proton channels

Electrostatic model of the flagellum motor

Rotor-stator (motor) interaction generates the torque (turning):

A water-flow driven turbine

<u>Alternating charges</u> on the rotor might be used to **drive the motor**:

- The lines of charges on the rotor are tilted with respect to the channels
- As positive protons move thru the channels, they attract negative charges on the rotor
- These electrostatic attraction forces might turn the motor

Torque-speed relationships

Methods to measure rotation of single motors:

- A) Laser illumination: <u>flagellum illuminatied by a laser</u> thru a small slit (dark bar)
- B) Polystrene beads: beads attached to flagellum and deflection monitored by laser
- C) Oscillating voltage: fixed cells are exposed to an oscillating (90°) voltage field

Schliwa, Molecular Motors, 1st Ed.

• Flagellum motor made of **20 different proteins**

It spans across <u>three</u> <u>layers of membranes</u>:
outer membrane,
peptidoglycan layer and
cytoplasmic membrane
It consists of various

components, such as a <u>rotor</u>, **stators**, a <u>drive</u> <u>shaft</u>, a **plug socket**, a <u>rotation-switch regulator</u>, and so on.

OM PL CM

• <u>Rotary motor embedded</u> <u>at the base</u> of a **helical filament**

• A <u>short segment</u> (55 nm) <u>connects</u> the <u>motor and</u> the helical <u>propeller</u> = **hook** (universal joint)

Flagellin molecules (synthesized in the cytoplasm) transported to the end of the filament through the channel
Flagellin binding is coordinated by a rotating cap (always preparing only one flagellin binding site)
Cap movements looks like climbing up the helical stairs step by step.

> Movie bacterial_motor.wmv 18:42

The bacterial flagella motor: Evolution or Intelligent design?

Intelligent design (ID) is the concept that some aspects of the natural universe are <u>better explained by</u> an **intelligent cause** <u>rather than by</u> an undirected process such as **natural selection**

- "The bacterial flagellum is an irreducible complex system" (a minimal, not reducible system)
- "This complexity could not have arisen through gradual variation or <u>natural selection</u>"
- "This system is so complex that it <u>can only function when all of</u> <u>their components are present</u>" (could not evolve from a simpler assembly which would be fully functionary)

nature REVIEWS MICROBIOLOGY

PERSPECTIVES

SCIENCE AND SOCIETY

From *The Origin of Species* to the origin of bacterial flagella

Mark J. Pallen and Nicholas J. Matzke

© 2006 Nature Publishing Group

Protein	Location	Function	Indispensable?	Homologies*
FlgA	P ring	Chaperone?	Absent from Gram-positive bacteria	CpaB‡
FlgBCFG	Rod	Transmission shaft	Yes	FlgBCEFGK [§]
FlgD	Hook	Hook cap	Yes	
FlgE	Hook	Universal joint	Yes	FlgBCEFGK
FlgH	Lring	Bushing	Absent from Gram-positive bacteria	None yet known
Flgl	Pring	Bushing	Absent from Gram-positive bacteria	None yet known
FlgJ	Rod	Rod cap; muramidase	FlgJ N-terminal domain absent from some systems	None yet known
FlgK	Hook-filament junction	Hook-associated protein 1	Yes	FlgBCEFGK [#]
FlgL	Hook-filament junction	Hook-associated protein 3	Yes	FliC [§]
FlgM	Cytoplasm and exterior	Anti-σ factor	Absent from Caulobacter	None yet known
FlgN	Cytoplasm	Chaperone	Undetectable in some systems	None yet known
FlhA	T3SS apparatus	Protein export	Yes	LcrD/YscV ^I
FlhB	T3SS apparatus	Protein export	Yes	YscUl
FlhDC	Cytoplasm	Transcriptional regulator	Absent from many systems	Other activators [‡]
FlhE	Unknown	Unknown	Mutant retains full motility	
FliA	Cytoplasm	σfactor	Absent from Caulobacter	RpoD, RpoH, RpoS ^I
FliB	Cytoplasm	N-methylase	Absent from Escherichia coli	
FliC	Filament	Flagellin	Tes	FlgL [®] , EspA [®]
FliD	Filament	Filament cap; hook-associated protein 2	Absent from Caulobacter	None yet known
FliE	Rod/basal body	MS ring–rod junction	Yes	None yet known
FliF	T3SS apparatus	Protein export	Yes	YscJ [§]
FliG	Peripheral	Motor	Yes	MgtE ¹
FliH	T3SS apparatus	Regulates Flil	Mutant retains some motility	YscL*, AtpFH ¹
Flil	T3SS apparatus	ATPase for protein export	Yes	YscN [∥] , AtpD [∥] , Rho [∥]
FliJ	Cytoplasm	Chaperone	Undetectable in some systems	YscO 1
FliK	Hook/basal body	Controls hook length	Yes	YscP1
FliL	Basal body	Unknown	Mutant retains full motility	None yet known
FliM	T3SS apparatus	Protein export	Yes	FliN [‡] , YscQ [‡]
FliN	T3SS apparatus	Protein export	Yes	FliM [‡] , YscQ [‡]
FliO	T3SS apparatus	Protein export	Undetectable in some systems	None
FliP	T3SS apparatus	Protein export	Yes	YscR∥
FliQ	T3SS apparatus	Protein export	Yes	YscSI
FliR	T3SS apparatus	Protein export	Yes	YseTI
FliS	Cytoplasm	FliC chaperone	Absent from Caulobacter	None yet known
FliT	Cytoplasm	FliD chaperone	Absent from many systems	None yet known
FliZ	Cytoplasm	Regulator	Absent from many systems	None yet known
MotA	Inner membrane	Motor	Yes	ExbB [‡] , TolQ [‡]
MotB	Inner membrane	Motor	Yes	ExbD [‡] , TolR [‡] , OmpA [‡]

- <u>Only 50%</u> of components are <u>really</u> <u>necessary</u> (=> indispensable)
- There is not "*the*" bacterial flagellum: <u>thousands</u> (if not millions) <u>different</u> <u>bacterial flagellum</u> systems exist
- Some are **redundant** and non-function and used for <u>functions others than motility</u>
- Several proteins have <u>sequence</u> <u>homology</u> indicating a common ancestor
- The flagellum <u>evolved</u> starting <u>from</u> just two proteins (e.g., **proto-flagellin**)
- <u>Similarities between flagellar and non-</u> <u>flagellar systems</u> exist
- Proto-flagellum could **easily arose** from pre-existing modules as the <u>ATPase</u>, polymerized <u>filaments</u>, <u>ion-channels</u> and domains of the <u>chemotaxis apparatus</u>

The bacterial flagella motor: Evolution or Intelligent design?

A nano-biomachine powered by highly motile bacteria

- Highly motile **gliding bacteria** *Mycoplasma mobile* <u>pulled on a</u> <u>micro-rotor</u> fueled by glucose
- How it works:
- Floating of cells into the circular track
- Glycoprotein coating on track-bottom helps bacteria attachment
- Restricting biotin-labeled bacteria movements to <u>streptavidin-coated rotor</u>

A nano-biomachine powered by highly motile bacteria

Example from your reading material!

- Translocation is initiated by **protonation of station 0** making the interaction between **train and station repulsive** (train moves to station 1 as a result)
- After <u>deprotonation</u> the system <u>relax back</u> to its initial state (train back to station 0)

Synthetic molecular muscle

- Two linear intertwined rotaxane units can contract and stretch like a muscle
- In the presence of Cu⁺ the conformation is **stretched**
- In the presence of Zn^{2+} the configuration is **contracted**

Molecular muscles

NEMS (<u>Nanoe</u>lectromechanical <u>systems</u>) device based on <u>rotaxane coated AFM</u> <u>cantilevers</u>: redox-driven contraction/relaxation of rotaxanes results in a <u>measureable deflection of the laserbeam</u>

Reducing agent Oxidizing agent

"Magic" movement of a liquid drop driven by rotaxanes

A <u>monolayer of</u> <u>rotaxanes</u> (turned on and off by UVlight) was able to move a liquid drop (1.25 µl) on a steep surface

Berná et al., Nat. Mater., 2005

Computer models of non-biological nano-machines

- Many macroscopic machines can be reduced to the nano-level
- Some <u>might work even better</u> (no friction, no wearing/tiring) some might be impossible to design based on their complexity (e.g., atomic power plant)
- Examples of <u>current modeled nano-constructions</u> are:
 - Nano Bearing
 - Nano Gear
 - Nano Filter
 - Nano Pump
 - Nano Electromotor/ Nano Car
 - Nano Computer (simple I/O)
- A nano-bearing does not need any bearingballs or lubricants
- It works based on strong covalent bonds and weak "van der Waals" repulsive forces
- Simulations are based on reliable software tools already used by Chemists for many years

Nano-bearings

Macroscopic bearing with bearing balls embedded in lubricant

http://www.e-drexler.com/

Computer models of non-biological nano-machines

- Planetary gearing is a <u>gear system</u> that consists of one or more <u>outer gears</u>, or **planet gears**, revolving about a <u>central</u>, or **sun gear**
- Planetary gears **convert shaft power** from one angular frequency to another

Computer models of non-biological nano-machines

Nano-pump

Complex nano-machines

Nano-worm drive assembly containing 11 components made from 25,374 atoms
Simulations took 340 hours to complete (on a regular desk-top computer)

http://www.e-drexler.com/

Applications, open questions and critique

• It's **only a matter of time** before nanotechnology (combined with MEMS and optofluidics) can result in the fabrication of **neuroprosthetic devices**, **artificial retina** etc.

• Very far from now perhaps a <u>brain implant using biological molecules to store data</u> can <u>back-up human memories</u> (which might otherwise be lost due to ageing or degenerative diseases)

• It might be feasible to think of atom-by-atom <u>manufacturing of such components</u> in **nanofactories**

• However: The two machines containing about <u>25,000 atoms</u>, are the most complex simulations ever created <u>and they haven't even been built yet</u>!

• By comparison: An **ion channel** (one of nature's sophisticated nanomachines) can have a molecular mass approaching 1MD (Mega Dalton), and contains **millions of atoms**

Nano Factory

Movie NanoFactory.mov

What is nature, what is life, what is a machine?

Since we are composed of units that can be dissect into parts, modules, domains, proteins and atoms the question might arose: Is life artificial?
Protein motors, intercellular sensors, membrane channels, protein scaffolds etc. leads to an mechanistic understanding of the cell (contrary to vitalist view)
However: Less fruitful doing biological research is to pull organisms apart and inspecting them piece by piece (reductionism)

A distinction between natural and artificial goes back at least to Aristotle and Plato but this distinction is becoming increasingly irrelevant: living organisms look more and more like machines, and machines look more and more like living organisms
The natural/artificial distinction is highly discussed in religion, genetic engineering,

food production, virtual realities, computer intelligence, medicine etc.

=> here <u>"natural" is</u> mostly considered beneficial, safe, reliable and trustworthy while <u>"artificial" is</u> basically considered imperfect, immoral, unhealthy, damaging and dangerous

Raymond Kurzweil's vision

- Inventor and futurist: optical character recognition (OCR), text-to-speech and speech recognition technology and electronic keyboard instruments
- Author of several books on <u>artificial intelligence</u> (AI), transhumanism, the technological singularity, and futurism
- Receiving many awards in including 15 (!) honorary doctoral degrees
- He made many **future (technology) predictions** while many of them became surprisingly reality

The technological singularity (predicted 2005):

2010-2020

- \$1000 computers have same processing power as human brains
- <u>Computers</u> become smaller and increasingly <u>integrated into everyday life</u> (clothes, furniture...)
- Glasses that beam images onto our retinas to a produce virtual reality (VR)
- <u>VR glasses</u> have built-in computers with "<u>virtual assistant</u>" programs that can <u>help</u> us <u>with</u> <u>various daily tasks</u> ("**augmented reality**")

2020-2030

- <u>Computers</u> less than <u>100 nm big</u>
- Nanomachines are used for medical purposes ("brainscans")
- <u>Nanobots capable of entering the bloodstream to "feed" cells and extract their waste</u> (we don't need to eat anymore)
- Nanotech-based manufacturing everywhere
- Virtual reality will be of such a high-quality that it will be indistinguishable from real reality
- A computer is a "Strong A.I." (artificial intelligence) and can think like a human

Kurzweil's prediction of a technological singularity

2030-2040

- Mind uploading becomes possible: "Copy and paste" a complete human's mind
- <u>Nanomachines</u> in brain <u>control incoming and outgoing signals</u> (can also block internal signals)
 - As a result, truly full-immersion virtual reality can be generated
 - Better cognitive, emotional, memory and sensory capabilities
 - Directly interfaing with computers
 - <u>"Telepathically" communicate</u> with other
- "Human body 2.0" consists of a <u>nanotechnological system of nourishment and circulation</u>: **no need for many internal organs**
- "Human body 3.0": Improved skeleton and **can alter its shape and external appearance** 2045-

The singularity

- Technological singularity = <u>artificial intelligences beat human beings as the smartest and most</u> <u>capable life forms</u> on the Earth
- Technological development is taken over by the machines
- Machines enter into an uncontrolled reaction of self-improvement cycles
- From this point, technological advancement is explosive

Kurzweil's prediction of a technological singularity

• The **elimination of humanity** by violent machines is **unlikely** because it is difficult to say who is (an enhanced) human and who is machine (A.I.) anyway

• A.I.s convert more and more of the Earth's matter into engineered, computational substrate to support even more A.I.s. until the whole Earth is one, gigantic computer

• At this point, the only possible way to increase the number of machines any further is to begin converting all of the matter in the universe into similar massive computers

• This is called the "wake up of the universe": all <u>"dumb" matter</u> (stones, dust, gases, etc.) is <u>converted</u> into <u>intelligent matter</u>

2099

• Planet-sized computers exist

2199

• Process of "wake-up of the universe" is completed

• Physical control over the whole universe: **clearing the laws of physics possible**, therefore <u>time, space and interdimensional travel</u> possible

The critiques

Douglas R. Hofstadter (Author of popular book "Goedel, Escher, Bach"):

• "It's as if you took a lot of **very good food** and some **dog excrement** and **mix it all** up so that you <u>can't possibly figure out what's good or bad</u>".

• "It's an intimate **mixture of rubbish and good ideas**, and it's <u>very hard to distinguish</u> <u>between the two</u>, because these are smart people; they're not stupid."

Bill Joy (Cofounder of Sun Microsystems): Agrees with Kurzweil's timeline of future progress, but believes that technologies such as A.I., nanotechnology and advanced biotechnology will create a dark, pessimistic, harmful and depressing (dystopian) world

Integrating single cells into stable tissues

3 principles act to form a tissue from single cells:

1) Cytoskeleton not only acts to stabilize single cells but also helps to connect a cell to a neighbor cell

2) Specialized (polymeric) proteins make **cell-cell contacts** (<u>cell adhesion molecules</u>, **CAM**)

3) An matrix outside the cell (<u>extracellular matrix</u>, **ECM**) acts as a **fibrous filling material** and to glue cells to each other

Single cells need to be stick together in a tissue as bricks in a wall

Integrating single cells into stable tissues

- Intracellular anchor proteins connect the cytoskeleton to transmembrane adhesion proteins (CAMs)
- Transmembrane adhesion proteins are embedded in the extracellular matrix (ECM)

Integrating single cells into stable tissues

Desmosomes are button-like structures connecting two cells

<u>Thick intermediate filament bundles</u> connected to electron dense structures can be seen in EM of **two keratinocytes** (skin cells) firmly connected to each other

Gap junctions are 2-3 nm wide "food-channels" between 2 cells

Gap junctions form a channel system for the <u>exchange of small metabolites</u> (as ions, sugars, vitamins, ATP etc.) <u>between two cells</u>

Cell junctions are crucial for tension and mechanical stability of tissues

Since cell **junctions** integrate a cell's cytoskeleton and at the same time strongly connect to neighboring cells, <u>shape</u>, <u>rigidity</u> and <u>cell</u> strength are largely increased

Functions of cell	junctions		
JUNCTION	ADHESION TYPE	CYTOSKELETAL ATTACHMENT	FUNCTION
Anchoring junctions			
1. Adherens junctions	Cell-cell	Actin filaments	Shape, tension, signaling
2. Desmosomes	Cell-cell	Intermediate filaments	Strength, durability, signaling
3. Hemidesmosomes	Cell-matrix	Intermediate filaments	Shape, rigidity, signaling
Tight junctions	Cell-cell	Actin filaments	Controlling solute flow, signaling
Gap junctions	Cell-cell	Possible indirect connections to cytoskeleton through adapters to other junctions	Communication; small-molecule transport between cells

ECM (extracellular matrix)

- Extracellular matrix (ECM) is the tissue below an epithelium (single cell layer)
- ECM contains many highly elastic fibers but also the cells that secrete these fibers
- These fibers and cells are embedded in a gel (hyaluronan and proteoglycans)

ECM contains stiff/non-elastic and highly elastic fibers

Highly elastic aorta need to resist strong and <u>alternating</u> blood pressure

Aorta

Elastic fiber (**elastin**) in the outer layer of the aorta

1 mm

Elastin molecules are <u>highly</u> <u>cross-liked</u> by covalent bonds
An elastin assembly can <u>stretch</u> <u>and relax</u> like a **rubber-band**

<u>100 µт</u>

(B)

Hyaluronan resists compression and gives cartilage its gel-like properties

• Major component of cartilage is the **aggrecan aggregate**: <u>huge molecule (MW 2 x 10⁸) with a size of a bacterium</u>

• Up to 100 **aggrecan** molecules are connected to a **hyaluronan** backbone

Collagens are elastic fibers found in skin and bone

Collagens are complex molecules embedded in the ECM

Cell contact with the ECM (e.g., fibronectin) is important for cell growth (proliferation) and cell survival

If a cell cannot spread on a larger space on the substrate it will eventually die:

The **spreading** of ECM proteins on a surface is <u>more important</u> than the **concentration** of these proteins (in a smaller area)

Literature

Molecular Cell Biology 6th Edition by <u>Harvey Lodish</u> etc.

Aug 2007

Cell Biology 2nd Edition by <u>Thomas D. Pollard</u> etc.

Apr 2007

Molecular Biology of the Cell, 5th Edition by <u>Bruce Alberts</u> etc.

Nov 2007

Free online books

http://www.ncbi.nlm.nih.gov/

S NCBI	Bookshelf
All Databases	PubMed Nucleotide Protein Genome Structu
Search Books	• Tor molecular cell biology Go Clear Save Search
	Limits Preview/Index History Clipboard Details
About Entrez	Display Books Show 20 Send to
Books	All: 525 Figures: 90 🔆
Overview	
Using the books	LANDES 88 items in Eurekah Bioscience Collection. Chapters taken from the Eurekah Bioscience database. Eurekah.com and Landes Bioscience; 2003.
Information for authors and	Sates 50 items in Cancer Medicine, 6th ed
publishers	Kufe, Donald W.; Pollock, Raphael E.; Weichselbaum, Ralph R.; Bast, Robert C., Jr.; Gansler, Ted S.; Holland
Contact us	Hamilton (Canada): <u>BC Decker Inc.</u> c2003.
Mailing list	46 items in Introduction to Genetic Analysis. 7th ed.
-	New York: W. H. Freeman & Co.; c1999.
Project background	-Cull 39 items in The Cell - A Molecular Approach 2nd ed
FAQ	Cooper, Geoffrey M.
My NCBI	Sunderland (MA): Smauer Associates, Inc; c2000.
Privacy Policy	37 items in WormBook: The Online Review of C. elegans Biology
	Pasadena (CA): <u>WormBook</u> ; c2005
	35 items in Modern Genetic Analysis. Griffiths, Anthony J.F.; Gelbart, William M.; Miller, Jeffrey H.; Lewontin, Richard C.
	New York: W. H. Freeman & Co.; c1999.
	34 items in Molecular Cell Biology. 4th ed.
	Lodish, Harvey; Berk, Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James E. New York: W. H. Freeman & Co.; c2000.
	33 items in Molecular Biology of the Cell 4th ed
	Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter New York and London: Garland Science; c2002

He Cell. Table of Contents - Windows Internet Explorer	
GOV + Shttp://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View	.ShowTOC&rid=cooper.TOC&depth=1
😤 🍄 😒 The Cell. Table of Contents	
THE CELL A MO GEOFFREY M. COOP Short Contents Full Contents	DLECULAR APPROACH Second Edition PER
Molecular Cell Biology. Table of Contents - Windows Internet Ex	plorer
S http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mcb.TOC	
😭 🏟 😔 Molecular Cell Biology. Table of Contents	
MOLECIII AR CELL BI	OI OCV
Lodish Berk Zipursky Matsudaira Baltimore D	arnell
Lodish Berk Zipursky Matsudaira Baltimore D WHEREEMAN AND COMPANY Short Contents Full Contents	arnell
Lodish Berk Zipursky Matsudaira Baltimore D W H FREEMAN AND COMPANY Short Contents Full Contents Molecular Biology of the Cell. Table of Contents - Windows I	Internet Explorer
Lodish Berk Zipursky Matsudaira Baltimore D W H FREEMAN AND COMPANY Short Contents Full Contents Molecular Biology of the Cell. Table of Contents - Windows I Molecular Biology of the Cell. Table of Contents - Windows I Http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mboc4	Internet Explorer TOC&depth=2
Lodish Berk Zipursky Matsudaira Baltimore D W H FREEMAN AND COMPANY Short Contents Full Contents Molecular Biology of the Cell. Table of Contents - Windows I Molecular Biology of the Cell. Table of Contents - Windows I Molecular Biology of the Cell. Table of Contents	Internet Explorer TOC&depth=2
Lodish Berk Zipursky Matsudaira Baltimore D WHEREEMAN AND COMPANY Short Contents Full Contents Molecular Biology of the Cell. Table of Contents - Windows I Molecular Biology of the Cell. Table of Contents Molecular Biology of the Cell. Table of Contents MOLECULAR BIOLOGY OF THE CELL	ALBERTS JOHNSON LEWIS RAFF ROBERTS WALTER
Lodish Berk Zipursky Matsudaira Baltimore D WHFREEMAN AND COMPANY Short Contents Full Contents Molecular Biology of the Cell. Table of Contents - Windows I Molecular Biology of the Cell. Table of Contents Molecular Biology of the Cell. Table of Contents MOLECULAR BIOLOGY OF THE CELL FOURTH EDITION	ALBERTS JOHNSON LEWIS RAFF ROBERTS WALTER

Cytoskeleton: Signalling and Cell Regulation (A Practical Approach) by Kermit L. Carraway and Carolie A. Carothers Carraway

Mar 2000

Cytoskeleton Methods and Protocols by <u>Ray H. Gavin</u> (Editor)

Jan 2001

Cytoskeletal Mechanics: Models and Measurements by Mohammad R. K. Mofrad and Roger Kamm

Sep 2006

G Proteins, Cytoskeleton and Cancer by <u>Hiroshi, Ed. Maruta</u>

Jan 1998

Aspects of the Cytoskeleton by <u>Seema Khurana</u>

Nov 2006

Molecular Motors by <u>Manfred Schliwa</u>

1910	tors		
Edited b	oy Man	fred Scl	hliw
5 5 4	<u>(}</u>	5 5 5	an dige
11 11	5 4 4	5	1000
5 5 1	. Anna	5 8	1

Mar 2003

Mechanics of Motor Proteins and the Cytoskeleton by Jonathon Howard

Feb 2001

Molecular Motors: Methods and Protocols by <u>Ann O. Sperry</u>

Jun 2007

Guidebook to the Cytoskeletal and Motor Proteins

by <u>Thomas Kreis</u> and <u>Ronald</u> <u>Vale</u>

A SAMBROOK & TOOZE PUBLICATION AT OXFORD UNIVERSITY PRESS

Second edition

Edited by Thomas Kreis and Ronald Vale

Sep 1999

Molecular Devices and Machines

by Vincenzo Balzani etc.

WILEY-VCH

V. Balzani, M. Venturi, A. Credi Molecular Devices and Machines

A Journey into the Nanoworld

Apr 2003

Our Molecular Nature: The Body's Motors, Machines and Messages by David S. Goodsell

Apr 1996

Molecular Machines by <u>T. Ross Kelly</u>

Feb 2006

Molecular Machines & Motors by <u>J.-P. Sauvage</u>

Jul 2001

June 2006

Intermediate Filament Cytoskeleton by <u>M. Bishr Omary</u> and Pierre A. Coulombe

Dec 2004

Molecular Interactions of Actin by <u>D.D. Thomas</u> and <u>C.G. dos Remedios</u>

Mar 2002

Actin-Binding Proteins and Disease by <u>Cris dos Remedios</u> and <u>Deepak Chhabra</u>

Actin-Monomer-Binding by <u>Pekka Lappalainen</u>

Nov 2007

Dec 2006

Dec 2007

The Role of Microtubules in Cell Biology, Neurobiology, and Oncology by <u>Antonio Tito Fojo</u>

Edited by Antonio T. Fojo, MD, PhD

* HUMANA PRESS

May 2008

Microtubule Protocols by <u>Jun Zhou</u>

Aug 2007

Review articles

Cell Biology

Current Opinion in Cell Biology

Copyright © 2008 Elsevier Ltd. All rights reserved

The Current Opinion Collection: Current Opinion in Biotechnology • Cell Biology • Chemical Biology • Genetics & Development • Im

Articles that summarize the **hot trends** in cell biology (it is free!)

Thank you for your attention!

王歐力 副教授 Oliver I. Wagner, PhD Associate Professor

National Tsing Hua University Institute of Molecular & Cellular Biology College of Life Science

